ANTIPARASITIC RESISTANCE
RECENT HISTORY AND FDA EXPERIENCE

Anna O’Brien, DVM
Center for Veterinary Medicine,
Food and Drug Administration (FDA),
United States
Overview

Antiparasitic resistance is a global issue for grazing livestock

- Defining antiparasitic resistance
- Brief history of antiparasitic resistance in North America and globally
- Methods for slowing the development of antiparasitic resistance on a farm
- U.S. regulatory experience
FDA-CVM

- Within FDA, the Center for Veterinary Medicine (CVM) regulates animal drugs (including antiparasitics), animal feed, and veterinary devices.
- We make sure an animal drug is safe and effective before approving it.
- We monitor the safety and effectiveness of animal drugs on the market.
Background

- Common gastrointestinal nematodes (roundworms) of grazing livestock
 - Haemonchus*
 - Trichostronglyus*
 - Ostertagia*
 - Cooperia
 - Strongylus vulgaris*
 - Cyathostomes
 - Parascaris equorum

*most pathogenic
Background

- Internal parasitism has a large impact on livestock owners

- Results in:
 - Weight loss
 - Decreased milk production
 - Decreased fertility
 - Increased susceptibility to other diseases
 - Death
Major antiparasitic drug classes

<table>
<thead>
<tr>
<th>Antiparasitic Drug Class</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzimidazoles</td>
<td>Thiabendazole, albendazole, fenbendazole, oxfendazole, oxibendazole</td>
</tr>
<tr>
<td>Imidazothiazoles</td>
<td>Levamisole</td>
</tr>
<tr>
<td>Tetrahydropyrimidines</td>
<td>Morantel tartate, pyrantel</td>
</tr>
<tr>
<td>Macrocyclic lactones</td>
<td>Ivermectin, doramectin, eprinomectin, moxidectin</td>
</tr>
<tr>
<td>Piperazines</td>
<td>Piperazine</td>
</tr>
<tr>
<td>Isoquinolones</td>
<td>Praziquantel*</td>
</tr>
</tbody>
</table>
Defining antiparasitic resistance

- **Definition:**
 - Ability of a parasite to survive treatment with an antiparasitic drug that is generally effective against the same parasite species at the same dose and against the same stage of infection.

 Due mostly to gene mutations in the parasite which are passed to subsequent generations of parasites
Measuring antiparasitic resistance

Fecal egg count reduction test:
Egg reduction $< 90\%$ post-treatment indicates antiparasitic resistance
First global reports of antiparasitic resistance (Kaplan 2004)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Host</th>
<th>Year of initial drug approval *not necessarily in US</th>
<th>First published report of resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzimidazoles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiabendazole</td>
<td>Sheep</td>
<td>1961</td>
<td>1964</td>
</tr>
<tr>
<td></td>
<td>Horse</td>
<td>1962</td>
<td>1965</td>
</tr>
<tr>
<td>Imidothiazoles-tetrahydropyrimidines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levamisole</td>
<td>Sheep</td>
<td>1970</td>
<td>1979</td>
</tr>
<tr>
<td></td>
<td>Horse</td>
<td>1974</td>
<td>1996</td>
</tr>
<tr>
<td>Macrocyclic lactones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ivermectin</td>
<td>Sheep</td>
<td>1981</td>
<td>1988</td>
</tr>
<tr>
<td></td>
<td>Horse</td>
<td>1983</td>
<td>2002</td>
</tr>
<tr>
<td>Moxidectin</td>
<td>Sheep</td>
<td>1991</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Horse</td>
<td>1995</td>
<td>2003</td>
</tr>
</tbody>
</table>
Antiparasitic resistance: North America

Small ruminants:
- Since 2003, resistance well-documented and widespread, mostly in Southeast U.S.
- First case of total antiparasitic failure in goats in U.S. 2004

Cattle:
- 2009 data confirmed resistance to macrocyclic lactones across 9 states
- Cooperia spp. resistance becoming a problem
Antiparasitic resistance: North America

Horses:

- Resistance in small strongyles to benzimidazoles is high throughout the country.
- Overall equine nematode resistance to antiparasitics in U.S. uncertain.
Antiparasitic resistance: Europe/Asia

- In general, antiparasitic resistance in Europe is relatively low, however:
 - 2007 report of resistance to all 3 major anthelmintic classes in Scotland (Sargison, et al 2007); other sporadic reports elsewhere

- Reports of antiparasitic resistance in India, Middle East
 - 2015 report from India demonstrating resistance in sheep to levamisole and albendazole (Manikkavasagan, 2015)
Antiparasitic resistance: Australia/New Zealand

- Cattle: in the North Island of NZ, a reduction in FEC of > 95% was demonstrated in only 7% of beef cattle farms (4/61) for albendazole, levamisole, ivermectin.

- Sheep: very serious growing problem:
 - 2000, 40% sheep farms in Western Australia had avermectin-resistant *T. circumcincta*
 - 2005, 60%
 - 2012, estimated 80% of farms
Antiparasitic resistance: Africa

- First case of ivermectin resistance in sheep reported by Van Wyk in South Africa in 1987
- Reports of antiparasitic resistance from other African countries
 - Primarily from Kenya and South Africa
 - Mainly in sheep
 - *Haemonchus contortus*
Parasitologists are uncertain of the current prevalence and distribution of antiparasitic resistant parasites in the U.S. in livestock species, particularly beef cattle and horses.

KEY: you only find antiparasitic resistance when you look. Many countries don’t have the personnel, infrastructure, or tools to look for resistance.
Recent history:

- Ivermectin and other macrocyclic lactones (MLs) were highly effective when first approved in 1980s/1990s
- Producers became heavily dependent on drugs for control of parasites, resistance has spread
Factors contributing to antiparasitic resistance

- **Parasite factors**
 - Genetics, biology

- **Management factors**
 - Treating too frequently
 - Under-dosing

- **Drug factors**
 - Sub-therapeutic drug levels after initial therapeutic level
Responsible use

Need for a change in the way veterinarians and producers view parasites:

From parasite elimination to parasite control
Evaluating parasitism

- Weight loss/body condition score
- Diarrhea scores
- Poor coat
- Bottle jaw
- Fecal egg counts
- Age of animal/susceptibility risks
Evaluating parasitism: FAMACHA
Responsible management

- Weigh/weight tape animals to ensure proper dosing
- Follow label directions for adequate administration
- Quarantine new livestock, if possible
- Reduce grazing density on pastures, if possible
- Cull chronic poor-doers, if possible
- Avoid deworming the entire herd: Use Targeted Selective Treatment (TST)
Refugia

The proportion of the total parasite population that is not selected for antiparasitic treatment

- Those parasites that are in “refuge” from the drug
- Therefore have no selection pressure to develop resistance
- A benefit of refugia is to maintain a proportion of susceptible parasites on the farm
Role of education

- In the U.S., many veterinary schools are starting to emphasize parasite management and vets are becoming more aware of the emergence of resistance in the U.S.

- This is where collaboration and communication play a vital role
 - Both locally and globally!
CVM’S ARMS initiative

Antiparasitic Resistance Management Strategy (ARMS)

- CVM’s initiative to promote sustainable use of antiparasitic drugs in grazing livestock species
- Launched in September 2012
- 3-pronged approach:
 - Education
 - Research
 - Regulation
Final thoughts

- Ultimately, we want to ensure that approved antiparasitics remain effective for as long as possible.
- This should be a shared goal throughout the world for the benefit of animal and public health.
Final Thoughts

- Global antiparasitic resistance has a large impact on animal welfare and economies, both locally and nationally.
- Education is key in spreading the word about responsible use of antiparasitic drugs.
Resources

- **CVM website:** http://www.fda.gov/animalveterinary/safetyhealth/ucm350360.htm

- **Docket for public meeting:**
 http://www.fda.gov/animalveterinary/resourcesforyou/ucm318015.htm

- **Public meeting overview:**

- **Brochure:**

- **Antiparasitic Resistance and Grazing Livestock in the United States**

- **Veterinary Parasitology Special Issue Vol 204, Issues 1-2, Pages 1-80 (30 July 2014)**
Contacts

- **Anna O’Brien, DVM** (cattle, small ruminants)
 anna.obrien@fda.hhs.gov

- **Aimee Phillippi-Taylor, DVM** (equine)
 aimee.phillippi-taylor@fda.hhs.gov