Campylobacter: food safety aspects and interventions

Prof. Jaap A. Wagenaar, DVM, PhD

Dept. Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands

Central Veterinary Institute, Lelystad, The Netherlands

j.wagenaar@uu.nl
Outline

- *Campylobacter*: introduction
- Control options in primary production
- Control options in processing stage
- Success stories
- Future approach to reduce the human *Campylobacter* burden
- Instructions for the consumer
Questionnaire: how is *Campylobacter* ranking?
Campylobacter

- Sensitive for heat, dryness, disinfection,...
 - *C. jejuni* (92% of gastro-intestinal infections)
 - *C. coli* (5% of gastro-intestinal infections)

- Many (all?) animal species are asymptomatic carrier of *Campylobacter*
The importance of *Campylobacter*

- *Campylobacter jejuni/coli* is the most common cause of bacterial intestinal disease in Europe
 - Estimated at 10 million cases per year in EU (costs: 2.4 billion)

- Serious outcome
 - 35-45 per 100,000 ill (EU); 3.5-4.0 hospitalized; 0.15-0.30 fatal

- 1999 CDC estimated 2.4 million cases annually in US
 - 13,000 hospitalizations and 120 deaths

- Sequelae
 - Guillain Barré Syndrome, Irritable Bowel Syndrome, Reactive Arthritis

- Largest part of the world: no data
Campylobacteriosis: sources of infection

- Poultry meat
- Contaminated drinking water
- Travelling
- Raw milk
- Direct animal contact
- Cross-contamination
Source attribution

Can we estimate the attribution from the sources for human campylobacteriosis?
Source attribution based on different approaches

- Case control studies and outbreaks: 24-29% attributed to poultry meat
Source attribution based on different approaches

- Case control studies and outbreaks: 24-29% attributed to poultry meat
- Intervention studies: 40% attributed to poultry meat
Campylobacteriosis incidence in Belgium

- Registered cases
- April, May, June, July
- 1998 vs 1999

Dioxin crisis

Data: Dr. Frank van Loock
Source attribution based on different approaches

- Case control studies and outbreaks: 24-29% attributed to poultry meat
- Intervention studies: 40% attributed to poultry meat
- Microbial subtyping (MLST): 50-80% attributed to poultry
Campylobacter in poultry
Colonisation of *Campylobacter* in broilers

- newly hatched chicks are *Campylobacter* free
- colonisation < 14 days rare - maternal immunity?
- colonisation is age dependent (organic production)
- up to 10^9 cfu per gram cecal contents
- asymptomatic and lifelong for broilers, slight decline in older birds
- almost 100% of birds in a flock become positive within a few days
Campylobacter and poultry meat

- Contamination of carcasses during processing
- 40% of EU carcasses > 10^3 cfu per g neck/breast skin
- Organisms don’t grow but survive well to retail
- Cross contamination of other foods is common
- A single drop of fluid from a positive bird can contain ~10^6 cfu
Interventions in the poultry meat production chain
What are we aiming for?

- Preferably absence
- If colonization cannot be prevented in primary production, the processing plant is in charge
- Eliminate the heavily contaminated carcasses

Quantitative risk assessment models indicate that “the incidence of campylobacteriosis associated with consumption of chicken meals could be reduced 30 times by introducing a 2 log reduction of the number of Campylobacter on the chicken carcasses”
Risk factors for farms to be *Campylobacter* positive
(input for intervention)

Increased
- Thinning
- Other animals
- Other poultry houses
- Age
- Water supply

Decreased
- Implementation of biosecurity measures
On-farm interventions: 3 approaches

- Prevent *Campylobacter* entering broiler houses during primary production
- Increase resistance of broiler chickens to colonisation
- Reduce the concentration of *Campylobacter* in chicken intestines before slaughtering
Prevention of introduction of *Campylobacter*: biosecurity

poultry farm
Prevention of introduction of *Campylobacter* farm
Prevention of introduction of *Campylobacter*

25 gram cecal content \(\times 10^9 \) x 50,000 broilers = \(10^{15} \) campylobacters/day

1 broiler can be become colonised with 50 campylobacters
On-farm interventions

- Biosecurity (including fly screens)
 - Thinning, consistently & rigorously applied, only indoor!

- Feed and water additives (acids, competitive exclusion, probiotics)

- Vaccination

- Phage therapy

- Genetic resistance

- Bacteriocines
On-farm interventions

- Biosecurity (including fly screens)
 - Thinning, consistently & rigorously applied, only indoor!

- Feed and water additives (acids, competitive exclusion, probiotics)

- Vaccination

- Phage therapy

- Genetic resistance

- Bacteriocines
Quantitative effect of interventions

Study by European Food Safety Authority

- Description of risk factors and interventions (based on literature review and EU baseline study)
- Estimation of effect of interventions on risk reduction of human campylobacteriosis and ranking (based on quantitative mathematical model)
- Description of advantages and disadvantages of potential interventions and time scale for availability
Selected interventions to be analysed by mathematical model

- Biosecurity
- Fly screens
- Discontinued thinning
- Reduction of slaughter age
- Reducing colonization by different approaches
- Decontamination
Conclusions on interventions (1)

Based on results of QMRA based on data from four countries:

- 100% risk reduction by reduction of carcass concentration by
 > 6 log_{10} units

 …..can be achieved by irradiation/cooking

- > 90% risk reduction by reduction of carcass concentrations by
 > 2 log_{10} units,

 …..can be achieved by freezing for 2-3 weeks or reduction of the
 concentration in intestines at slaughter by > 3 log units;

- 50-90% risk reduction by reduction of carcass concentrations
 by 1-2 log_{10} units,

 ……can be achieved by freezing for 2-3 days, hot water or
 chemical carcass decontamination with lactic acid, acidified
 sodium chlorite or trisodium phosphate
Conclusions on interventions (2)

- 50-90% risk reduction by an equivalent reduction of flock prevalence
 - *fly screens* (based on data from Denmark only)

- Up to 50% risk reduction by modifications of primary production,
 - *restriction of slaughter age* to a max 28 days (only indoor flocks)
 - *discontinued thinning*

- The risk reduction associated with interventions in primary production is expected to vary considerably between countries.

Success stories
Verified human *Campylobacter* cases

Iceland

Freezing campy pos carcasses
New Zealand data

Data Sources: ESR Ltd notification data; NZHIS hospitalisation data (filtered – thanks to Nigel French, Rob Lake and A. Sears)
Future control options for *Campylobacter*

EU: targets (counts per gram product)
What *Campylobacter* control programmes are in place in Asia?
Take home messages

- *Campylobacter* is the leading cause of bacterial enteric illness and associated with considerable morbidity.
- Up to 80% is poultry derived with 20-40% through poultry meat.
- Options for intervention in primary production are still (economically) limited and restricted to indoor production (animal welfare conflicting with food safety!)
- Aiming for *Campylobacter* negative flocks arriving at slaughterhouse; if not, go for the low counts per gram.
- The public health benefits of controlling *Campylobacter* in primary broiler production are expected to be greater than control later in the chain (due to non-poultry meat transmission routes).
Instructions for the consumer!!!
Dr. Henk van der Zee, Food Inspectorate, the Netherlands